COMBINED TREATMENT OF MACULAR EDEMA IN POST-THROMBOTIC RETINOPATHY

Yusupov A. F.1, Djamalova Sh.A.2, Makhmudova Z. A.3

1 Doctor of Medical Sciences, Director of Republican specialized scientific and practical medical center of eye microsurgery, e-mail: eye.center@mail.ru. +998901859695; https://orcid.org/0000–0003–1040–2866
2 Doctor of Medical Sciences, Associate Professor Republican specialized scientific and practical medical center of eye microsurgery https://orcid.org/0000–0002–8765–8176
3 PhD post-graduate student Republican Specialized Scientific and Practical eye microsurgery medical center, https://orcid.org/0000–0003–0581–6968

Abstract. Relevance. Currently, thanks to the development of laser technologies in ophthalmology, there is an active introduction of various methods of subthreshold laser exposure in retinal diseases, including post-thrombotic retinopathy.

Purpose. To study the effectiveness of the method of combined treatment of macular edema as a result of post-thrombotic retinopathy (PTR) using subthreshold laser exposure. Material and methods. Under supervision there were 18 patients (19 eyes) with PTR. Patients were divided into 2 gender- and age-homogeneous representative study groups: in the first study group (n=9, 9 eyes), patients received combined treatment using anti-VEGF therapy and subthreshold diode micropulse laser exposure using a 577NM yellow diode laser, the second comparative group (n=9, 10 eyes) patients were treated only with anti-VEGF therapy. Results. Within the indicated periods, patients of the study group showed positive dynamics in all studied functional and morphometric parameters. Laser treatment made it possible to stabilize the state of the retina after preliminary antiangiogenic therapy using micropulse laser exposure as well as to reduce the risk of neovascular complications using continuous laser exposure. Conclusion. The results of the study show that combined treatment, including subthreshold micropulse laser exposure, is quite effective and safe in cases of macular edema in post-thrombotic retinopathy.

Key words: retinal vein thrombosis; post-thrombotic retinopathy; subthreshold laser exposure.

For citations:

ПОД НАБЛЮДЕНИЕМ НАХОДИЛОСЬ 18 ПАЦИЕНТОВ (19 ГЛАЗ) С ПТР. ПАЦИЕНТЫ БЫЛИ РАЗДЕЛЕНЫ НА 2 ОДНОРОДНЫЕ ГРУППЫ ПО ПОЛУ И ВОЗРАСТУ: В ПЕРВОЙ ИССЛЕДУЕМОЙ ГРУППЕ (n=9, 9 ГЛАЗ) ПАЦИЕНТАМ ОСУЩЕСТВЛЯЛАСЬ КОМБИНИРОВАННОЕ ЛЕЧЕНИЕ С ИСПОЛЬЗОВАНИЕМ ANTI-VEGF ТЕРАПИИ, А ВО ВТОРОЙ СРАВНИТЕЛЬНОЙ ГРУППЕ (n=9, 10 ГЛАЗ) ПАЦИЕНТАМ ОСУЩЕСТВЛЯЛАСЬ ЛЕЧЕНИЕ ТОЛЬКО С ИСПОЛЬЗОВАНИЕМ ANTI-VEGF ТЕРАПИИ.

В УКАЗАННЫЕ СРОКИ У БОЛЬНЫХ ОСНОВНОЙ ГРУППЫ ОТМЕЧАЛСЯ ПОЛОЖИТЕЛЬНАЯ ДИНАМИКА ВСЕХ ИЗУЧАЕМЫХ ПАРАМЕТРОВ.

Аннотация. Актуальность. В настоящее время благодаря развитию лазерных технологий в офтальмологии, происходит активное внедрение различных методов субпорогового лазерного воздействия при заболеваниях сетчатки, в том числе при посттромботической ретинопатии. Цель исследования. Изучить эффективность комбинированного лечения посттромботической ретинопатии (ПТР) с использованием микропульсного лазерного воздействия.

Материал и методы. Под наблюдением находилось 18 пациентов (19 глаз) с ПТР. Пациенты были разделены на 2 однородные группы по полу и возрасту: в первой исследуемой группе (n=9, 9 глаз) пациентам осуществлялось комбинированное лечение с использованием анти-VEGF терапии, а в второй сравнительной группе (n=9, 10 глаз) пациентам осуществлялось лечение только с использованием анти-VEGF терапии.

Результаты. В указанные сроки у больных основной группы отмечена положительная динамика по всем изучаемым функциональным и морфометрическим показателям. Лазерное лечение позволило стабилизировать состояние сетчатки после предварительной антиангиогенной терапии и снизить риск развития неоваскуляризации сетчатки, используя непрерывное лазерное воздействие.

Заключение. Комбинированное лечение, включающее субпороговое микропульсное лазерное воздействие, доста точно эффективно и безопасно при макулярном отеке при посттромботической ретинопатии.

Ключевые слова: тромбоз вен сетчатки; посттромботическая ретинопатия; субпороговое лазерное воздействие.

Для цитирования:

Юсупов А. Ф., Джамалова Ш. А., Махмудова З. А. Комбинированное лечение макулярного отека при посттромботической ретинопатии. Передовая офтальмология. 2023; 3(3):189-192
ПОСТТРОМБОТИК РЕТИНОПАТИЯДА МАКУЛЯР ШИШНИ КОМБИНАЦИЯЛАШГАН ДАВОЛАШ

Юсупов А. Ф. 1, Джамалова Ш. А. 2, Махмудова З. А. 3

1ТИББИёт ФАНЛARI ДОКТОРИ, Республика ИХТИСОСЛАШТИРИЛГАН КЎЗ МИКРОХИРУРГИЯ ИЛМӢӢ АМАЛИӢ ТИББӢ маркази директори. e-mail: eye.center@mail.ru. +998901859695, https://orcid.org/0000–0003–1040–2866
2ТИББИёт ФАНЛARI ДОКТОРИ, доцент, Республика ИХТИСОСЛАШТИРИЛГАН КЎЗ МИКРОХИРУРГИЯ ИЛМӢӢ ТИББӢ маркази. https://orcid.org/0000–0002–8765–8176
3ТАЯНЧ ДОКТОРАНТУРА ИЗЛАНУВЧИСИ, Республика ИХТИСОСЛАШТИРИЛГАН КЎЗ МИКРОХИРУРГИЯ ИЛМӢӢ ТИББӢ маркази. https://orcid.org/0000–0003–0581–6968

Introduction. A complication of retinal vein occlusion (RVO) is the development of post-thrombotic retinopathy (PTR), a complex of pathological changes in the retina caused by prolonged ischemia after acute circulatory disorders in the venous bed of the retina and consisting of dilated intraretinal capillaries, vascular shunts, microaneurysms, extravasation and neovascularization. As a rule, it develops 1–3 months after the episode of occlusion. The main factor in reducing vision in PTR is macular edema (ME) [3,4].

Currently, various conservative treatment methods as intravitreal administration of angiogenesis inhibitors, corticosteroids, and various laser therapy methods are used to treat PTR. Despite the variety of existing methods for the treatment of PTR, they are not sufficiently effective and do not provide the necessary level of recovery of visual functions [1,2,7].

Classical panretinal coagulation (PRC) was considered as the traditional method of laser treatment for RVO and PTR, which, in the presence of ischemia and neovascularization zones, provides stabilization of the pathological process, regression of newly formed vessels, blocking of ischemic areas, and improvement of blood circulation in the retina. However, at present, many experts note that PRC often leads to a worsening of the course of MO and a decrease in visual functions. At the same time, this method is limited by the impossibility of using it in the avascular macular zone of the retina, since it can cause a destructive effect on the microstructures of the chorioretinal complex [5,6,8].

Recent developments in the field of laser treatment of retinal diseases have led to a significant expansion of the use of lasers. One of the achievements is the introduction of micropulse modes of laser radiation into clinical practice. Pathogenetically substantiated in the treatment of MO due to PTR is the impact of yellow spectrum laser radiation (with a wavelength of 577 nm) in the micropulse mode. It is the most selective in relation to retinal pigment epithelium cells, it is maximally absorbed by melanin and does not cause damage to a functionally significant area of the retina, which is ensured by the absence of absorption of radiation of this spectrum by the xanthophyll pigment of the macular zone [1,9,10].

In this regard, the task of finding more optimal methods of treating PTR is relevant and needs to be addressed.

Purpose of the study. To evaluate the effectiveness of the method of combined treatment of macular edema as a result of post-thrombotic retinopathy using subthreshold laser exposure.

Material and methods. The study was carried out in the laser department of RSNPMCEM. Under supervision there were 18 patients (19 eyes) with PTR, including 10 male and 8 female. The mean age of the patients was 51±4.7 years. The duration of an episode of RVO was 3–6 months.
Patients were divided into 2 gender- and age-homogeneous representative study groups: in the first study group (n=9, 9 eyes), patients received combined treatment using anti-VEGF therapy and subthreshold diode micropulse laser exposure using a 577NM yellow diode laser, the second comparative group (n=9, 10 eyes) patients were treated only with anti-VEGF therapy.

Before and after treatment, all patients underwent a complete ophthalmological examination, which included visometry, tonometry, visual fields, and retinal OCT.

Before the start of treatment, the resulting coagulate was tested in the sup/scan mode to determine the subthreshold mode of laser exposure. Micropulse laser treatment was performed on a Supra 577 nm laser device (Quantel medical). The parameters of laser radiation in this group of patients were: power 250–300–400 W, exposure 0.03 ms, duty cycle 10–12%, spot diameter 300–350 µm. The choice of laser radiation parameters depended on the transparency of the optical media of the eye and the degree of pigmentation of the fundus.

Results and discussion. As a result of the treatment, in all cases, an improvement in visual acuity was recorded, according to OCT data: a decrease in the height of macular edema, an improvement in the cytoarchitectonics of the retina, and a decrease in the number of cystic cavities.

Within the indicated periods, patients of the study group showed positive dynamics in all studied functional and morphometric parameters: after 1 month, best corrected visual acuity (BCVA) — 0,78±0,06; central retinal thickness (CRT) in the fovea — 295,5±16,5 µm; mean sensitivity (MS) — 20,4±1,24 dB; after 3 months: BCVA — 0,82±0,08; CRT in the fovea — 265,4±26,2 µm; MS — 21,6±2,1 dB; after 6 months: BCVA — 0,85±0,04; CRT in the fovea — 254,5±18,4 µm; MS — 23,3±2,2 dB.

Thus, the proposed technology for the combined treatment of ME due to RVO, using two different types of interventions, provided the possibility of influencing several links in the pathogenesis of this disease. Intravitreal administration of angiogenesis inhibitors contributed to a decrease in the height and area of the ME due to a decrease in the production of VEGF and a decrease in vascular permeability; during the course of therapy, gradual resorption of hemorrhages occurred, which improved conditions for adequate focusing and targeted application of laser applications. Laser treatment made it possible to stabilize the state of the retina after preliminary antiangiogenic therapy using micropulse laser exposure (stimulation of the production of PEDF, Figure 1. Clinical case. Patient L., born in 1955 D/S: OD: RVO. Post-thrombotic retinopathy. A: fundus picture and macular OCT before treatment. The patient received anti-VEGF treatment according to the scheme, which was supplemented with micropulse laser therapy (577 NM, power 250–300–400 W, exposure 0.03 ms, duty cycle 10–12%, spot diameter 300–350 µm). B: OCT image of the macular area 1.5 months after treatment.
which is the most pronounced natural inhibitor of angiogenesis), as well as to reduce the risk of neovascular complications using continuous laser exposure.

Conclusion. The results of the study show that combined treatment, including subthreshold micropulse laser exposure, is quite effective and safe in cases of macular edema in post-thrombotic retinopathy.

ЛИТЕРАТУРА/REFERENCES