ЗНАЧЕНИЕ ОКТ-АНГИОГРАФИИ В ИССЛЕДОВАНИИ МИКРОЦИРКУЛЯЦИИ СЕТЧАТКИ И ДЗН ПРИ ГЛАУКОМЕ (ОБЗОР)

ЗНАЧЕНИЕ ОКТ-АНГИОГРАФИИ В ИССЛЕДОВАНИИ МИКРОЦИРКУЛЯЦИИ СЕТЧАТКИ И ДЗН ПРИ ГЛАУКОМЕ (ОБЗОР)

Авторы

  • Туйчибаева Д.М. Ташкентский государственный стоматологический институт
  • Янгиева Н.Р Ташкентский государственный стоматологический институт

DOI:

https://doi.org/10.57231/j.ao.2024.7.1.008

Ключевые слова:

ОКТ-ангиография, ретинальная микроциркуляция, макула, перипапиллярная сетчатка, ауторе- гуляция глазного кровотока

Аннотация

Новый метод исследования микроциркуляторного русла глаза — оптическая когерентная томография-ангиография (ОКТ-А) — позволил получить новые сведения об анатомии и физиологии микроциркуляции сетчатки и диска зрительного нерва. В обзоре приводятся данные литературы о снижении перипапиллярного и макулярного кровотока при различных стадиях глаукомы. Показана корреляция этих изменений со структурными и функциональными нарушениями. Подчеркнуто, что метод ОКТ-А перспективен как в ранней диагностике глаукомы, так и при ее мониторинге.

Биографии авторов

Туйчибаева Д.М., Ташкентский государственный стоматологический институт

Доктор медицинских наук, доцент кафедры Офтальмологии

Янгиева Н.Р, Ташкентский государственный стоматологический институт

Доктор медицинских наук, доцент кафедры Офтальмологии

Библиографические ссылки

Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121 (7): 1322–32. doi.org/ 10.1016/j.ophtha.2014.01.021

Liu L., Jia Y., Takusagawa H.L., et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133 (9): 1045–52. doi.org/10.1001/jamaophthalmol.2015.2225

Wang X., Jiang C., Ko T., et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253 (9): 1557–64. doi.org/10.1007/s00417-015-3095-y 4. Lévêque P.M., Zéboulon P., Brasnu E., Baudouin C., Labbé A. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J. Ophthalmol. 2016; 2016: 6956717. doi.org/10.1155/2016/6956717 5. Курышева Н.И., Маслова Е.В., Трубилина А.В., Лагутин М.Б.

Роль оптической когерентной томографии с функцией ангиографии в ранней диагностике и мониторинге глаукомы. Национальный журнал глаукома. 2016; 14 (2): 20–32.

Kurysheva N.I., Maslova E.V., Trubilina A.V., Lagutin M.B. Role of OCT with angiography function in the early diagnostics and monitoring of glaucoma. Natsional’ny zhurnal glaucoma. 2016; 14 (2): 20–32 (in Russian).

Hollo G. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values. PLoS ONE. 2017. 12 (2): e0171541. doi:10.1371/journal.pone.0171541

Yarmohammadi A., Zangwill L.M., Diniz-Filho A., et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest. Ophthalmol. Vis Sci. 2016; 57 (9): 451–9. doi.org/10.1167/iovs.15-18944

Geyman L.S., Garg R.A., Suwan Y., et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017; 101 (9): 1261–8. doi: 10.1136/bjophthalmol-2016-309642

Akil H., Huang A.S., Francis B.A., Sadda S.R., Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE. 2017; 12 (2): e0170476. doi:10.1371/journal. pone.0170476

Rao H.L., Pradhan Z.S., Weinreb R.N., et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br. J. Ophthalmol. 2016; Nov. 29. pii: bjophthalmol-2016-309377. doi.org/10.1136/bjophthalmol-2016-309377

Suh M.H., Zangwill L.M., Manalastas P.I., et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016; 123 (11): 2309–17. doi.org/10.1016/j.ophtha.2016.07.023

Rao H.L., Pradhan Z.S., Weinreb RN., et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am. J. Ophthalmol. 2016; 171: 75–83. doi.org/10.1016/j.ajo.2016.08.030

Kurysheva N.I. Macula in glaucoma: vascularity evaluated by OCT angiography. Res. J. Pharmaceutical, Biological and Chemical Sci. 2016; 7 (5): 651–62

Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24 (1): 39–73. doi.org/10.1016/j.pretey-eres.2004.06.001

Shoji T., Zangwill L.M., Akagi T., et al. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol. 2017; 182: 107–117. doi: 10.1016/j.ajo.2017.07.011

Scripsema N.K., Garcia P.M., Bavier R.D., et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57 (9): 611–20. doi. org/10.1167/iovs.15-18945

Bojikian K.D., Chen C.-L., Wen J.C., et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLoS One. 2016; 11 (5): e0154691. doi.org/ 10.1371/journal.pone.0154691

Costa V.P., Harris A., Anderson D., et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014; 92: e252–e266. doi.org/10.1111/aos.12298

Sehi M., Goharian I., Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014; 121 (3): 750–8. doi.org/10.1016/j.ophtha.2013.10.022

Falsini B., Anselmi G.M., Marangoni D., et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa. Invest. Oph-thalmol. Vis. Sci. 2011; 52 (2): 1064–9. doi.org/10.1167/iovs.10-5964

Zeitz O., Galambos P., Wagenfeld L., et al. Glaucoma progression is associated with decreased blood flow velocities in the short pos-terior ciliary artery. Br. J. Ophthalmol. 2006; 90 (10): 1245–8. doi. org/10.1136/bjo.2006.093633

Zheng Y., Cheung N., Aung T., et al. Relationship of retinal vascular caliber with retinal nerve fiber layer thickness: the Singapore

Malay Eye Study. Invest. Ophthalmol. Vis. Sci. 2009; 50 (9): 4091–6. doi. org/10.1167/iovs.09-3444

Cheung N., Huynh S., Wang J.J., et al. Relationships of retinal ves-sel diameters with optic disc, macular and retinal nerve fiber layer parameters in 6-year-old children. Invest. Ophthalmol. Vis.Sci. 2008; 49 (6): 2403–8. doi.org/10.1167/iovs.07-1313

Yu J., Gu R., Zong Y., et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest. Ophthalmol. Vis. Sci. 2016; 57 (9): 204–10. doi.org/10.1167/iovs.15-18630

Chui T.Y.P., Zhong Z., Song H., Burns S.A. Foveal avascular zone and its relationship to foveal pit shape. Optometry Vision Sci.2012; 89 (5): 602–10.

Tick S., Rossant F., Ghorbel I., et al. Foveal shape and structure in a normal population. Invest Ophthalmol. Vis. Sci. 2011; 52 (8): 5105–10. doi.org/10.1167/iovs.10-7005

Tham Y.C., Cheng C.Y., Zheng Y., et al. Relationship between retinal vascular geometry with retinal nerve fiber layer and ganglion cell-inner plexiform layer in nonglaucomatous eyes. Invest Ophthalmol Vis Sci. 2013; 54 (12): 7309–16. doi.org/10.1167/iovs.13-12796

Yu P.K., Cringle S.J., Yu D. Correlation between the radial peri-papillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye Res. 2014; 129: 83–92. doi.org/10.1016/j. exer.2014.10.020

Lee E.J., Lee K.M., Lee S.H., Kim T.-W. OCT-angiography of the peripapillary retina in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57 (14): 6265–70. doi.org/10.1167/iovs.16-20287

Tuychibaeva D. Epidemiological and clinical-functional aspects of the combined course of age-related macular degeneration and primary glaucoma. J.ophthalmol. (Ukraine). 2023;3:3-8. https://doi.org/10.31288/oftalmolzh2023338

Туйчибаева Д.М. Основные характеристики динамики показателей инвалидности вследствие глаукомы в Узбекистане. Офтальмология. Восточная Европа. 2022;12.2:195-204. [Tuychibaeva D.M. Main Characteristics of the Dynamics of Disability Due to Glaucoma in Uzbekistan. «Ophthalmology. Eastern Europe», 2022;12.2:195-204. (in Russian)]. https://doi.org/10.34883/PI.2022.12.2.027

Tuychibaeva DM. Longitudinal changes in the disability due to glaucoma in Uzbekistan. J.ophthalmol. (Ukraine). 2022;4:12-17. http://doi.org/10.31288/oftalmolzh202241217

Bakhritdinova F. A., Urmanova F. M., Tuychibaeva D.M. Diagnostic role of angiography optical coherent tomography in diabetic retinopathu. Advanced Opthalmology. 2023;2(2):29-34. DOI: https://doi.org/10.57231/j.ao.2023.2.2.005

Bakhritdinova F. A., Urmanova F. M., Tuychibaeva D.M. Evaluation of the effectiveness of a conservative method of treatment of early srage diabetic retinopathy. - Advanced Opthalmology. - 2023;2(2):35-41. DOI: https://doi.org/10.57231/j.ao.2023.2.2.006

Загрузки

Опубликован

2024-06-07
Loading...