ЗНАЧЕНИЕ ОКТ-АНГИОГРАФИИ В ИССЛЕДОВАНИИ МИКРОЦИРКУЛЯЦИИ СЕТЧАТКИ И ДЗН ПРИ ГЛАУКОМЕ (ОБЗОР)
DOI:
https://doi.org/10.57231/j.ao.2024.7.1.008Ключевые слова:
ОКТ-ангиография, ретинальная микроциркуляция, макула, перипапиллярная сетчатка, ауторе- гуляция глазного кровотокаАннотация
Новый метод исследования микроциркуляторного русла глаза — оптическая когерентная томография-ангиография (ОКТ-А) — позволил получить новые сведения об анатомии и физиологии микроциркуляции сетчатки и диска зрительного нерва. В обзоре приводятся данные литературы о снижении перипапиллярного и макулярного кровотока при различных стадиях глаукомы. Показана корреляция этих изменений со структурными и функциональными нарушениями. Подчеркнуто, что метод ОКТ-А перспективен как в ранней диагностике глаукомы, так и при ее мониторинге.
Библиографические ссылки
Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121 (7): 1322–32. doi.org/ 10.1016/j.ophtha.2014.01.021
Liu L., Jia Y., Takusagawa H.L., et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133 (9): 1045–52. doi.org/10.1001/jamaophthalmol.2015.2225
Wang X., Jiang C., Ko T., et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253 (9): 1557–64. doi.org/10.1007/s00417-015-3095-y 4. Lévêque P.M., Zéboulon P., Brasnu E., Baudouin C., Labbé A. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J. Ophthalmol. 2016; 2016: 6956717. doi.org/10.1155/2016/6956717 5. Курышева Н.И., Маслова Е.В., Трубилина А.В., Лагутин М.Б.
Роль оптической когерентной томографии с функцией ангиографии в ранней диагностике и мониторинге глаукомы. Национальный журнал глаукома. 2016; 14 (2): 20–32.
Kurysheva N.I., Maslova E.V., Trubilina A.V., Lagutin M.B. Role of OCT with angiography function in the early diagnostics and monitoring of glaucoma. Natsional’ny zhurnal glaucoma. 2016; 14 (2): 20–32 (in Russian).
Hollo G. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values. PLoS ONE. 2017. 12 (2): e0171541. doi:10.1371/journal.pone.0171541
Yarmohammadi A., Zangwill L.M., Diniz-Filho A., et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest. Ophthalmol. Vis Sci. 2016; 57 (9): 451–9. doi.org/10.1167/iovs.15-18944
Geyman L.S., Garg R.A., Suwan Y., et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017; 101 (9): 1261–8. doi: 10.1136/bjophthalmol-2016-309642
Akil H., Huang A.S., Francis B.A., Sadda S.R., Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE. 2017; 12 (2): e0170476. doi:10.1371/journal. pone.0170476
Rao H.L., Pradhan Z.S., Weinreb R.N., et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br. J. Ophthalmol. 2016; Nov. 29. pii: bjophthalmol-2016-309377. doi.org/10.1136/bjophthalmol-2016-309377
Suh M.H., Zangwill L.M., Manalastas P.I., et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016; 123 (11): 2309–17. doi.org/10.1016/j.ophtha.2016.07.023
Rao H.L., Pradhan Z.S., Weinreb RN., et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am. J. Ophthalmol. 2016; 171: 75–83. doi.org/10.1016/j.ajo.2016.08.030
Kurysheva N.I. Macula in glaucoma: vascularity evaluated by OCT angiography. Res. J. Pharmaceutical, Biological and Chemical Sci. 2016; 7 (5): 651–62
Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24 (1): 39–73. doi.org/10.1016/j.pretey-eres.2004.06.001
Shoji T., Zangwill L.M., Akagi T., et al. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol. 2017; 182: 107–117. doi: 10.1016/j.ajo.2017.07.011
Scripsema N.K., Garcia P.M., Bavier R.D., et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57 (9): 611–20. doi. org/10.1167/iovs.15-18945
Bojikian K.D., Chen C.-L., Wen J.C., et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLoS One. 2016; 11 (5): e0154691. doi.org/ 10.1371/journal.pone.0154691
Costa V.P., Harris A., Anderson D., et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014; 92: e252–e266. doi.org/10.1111/aos.12298
Sehi M., Goharian I., Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014; 121 (3): 750–8. doi.org/10.1016/j.ophtha.2013.10.022
Falsini B., Anselmi G.M., Marangoni D., et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa. Invest. Oph-thalmol. Vis. Sci. 2011; 52 (2): 1064–9. doi.org/10.1167/iovs.10-5964
Zeitz O., Galambos P., Wagenfeld L., et al. Glaucoma progression is associated with decreased blood flow velocities in the short pos-terior ciliary artery. Br. J. Ophthalmol. 2006; 90 (10): 1245–8. doi. org/10.1136/bjo.2006.093633
Zheng Y., Cheung N., Aung T., et al. Relationship of retinal vascular caliber with retinal nerve fiber layer thickness: the Singapore
Malay Eye Study. Invest. Ophthalmol. Vis. Sci. 2009; 50 (9): 4091–6. doi. org/10.1167/iovs.09-3444
Cheung N., Huynh S., Wang J.J., et al. Relationships of retinal ves-sel diameters with optic disc, macular and retinal nerve fiber layer parameters in 6-year-old children. Invest. Ophthalmol. Vis.Sci. 2008; 49 (6): 2403–8. doi.org/10.1167/iovs.07-1313
Yu J., Gu R., Zong Y., et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest. Ophthalmol. Vis. Sci. 2016; 57 (9): 204–10. doi.org/10.1167/iovs.15-18630
Chui T.Y.P., Zhong Z., Song H., Burns S.A. Foveal avascular zone and its relationship to foveal pit shape. Optometry Vision Sci.2012; 89 (5): 602–10.
Tick S., Rossant F., Ghorbel I., et al. Foveal shape and structure in a normal population. Invest Ophthalmol. Vis. Sci. 2011; 52 (8): 5105–10. doi.org/10.1167/iovs.10-7005
Tham Y.C., Cheng C.Y., Zheng Y., et al. Relationship between retinal vascular geometry with retinal nerve fiber layer and ganglion cell-inner plexiform layer in nonglaucomatous eyes. Invest Ophthalmol Vis Sci. 2013; 54 (12): 7309–16. doi.org/10.1167/iovs.13-12796
Yu P.K., Cringle S.J., Yu D. Correlation between the radial peri-papillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye Res. 2014; 129: 83–92. doi.org/10.1016/j. exer.2014.10.020
Lee E.J., Lee K.M., Lee S.H., Kim T.-W. OCT-angiography of the peripapillary retina in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57 (14): 6265–70. doi.org/10.1167/iovs.16-20287
Tuychibaeva D. Epidemiological and clinical-functional aspects of the combined course of age-related macular degeneration and primary glaucoma. J.ophthalmol. (Ukraine). 2023;3:3-8. https://doi.org/10.31288/oftalmolzh2023338
Туйчибаева Д.М. Основные характеристики динамики показателей инвалидности вследствие глаукомы в Узбекистане. Офтальмология. Восточная Европа. 2022;12.2:195-204. [Tuychibaeva D.M. Main Characteristics of the Dynamics of Disability Due to Glaucoma in Uzbekistan. «Ophthalmology. Eastern Europe», 2022;12.2:195-204. (in Russian)]. https://doi.org/10.34883/PI.2022.12.2.027
Tuychibaeva DM. Longitudinal changes in the disability due to glaucoma in Uzbekistan. J.ophthalmol. (Ukraine). 2022;4:12-17. http://doi.org/10.31288/oftalmolzh202241217
Bakhritdinova F. A., Urmanova F. M., Tuychibaeva D.M. Diagnostic role of angiography optical coherent tomography in diabetic retinopathu. Advanced Opthalmology. 2023;2(2):29-34. DOI: https://doi.org/10.57231/j.ao.2023.2.2.005
Bakhritdinova F. A., Urmanova F. M., Tuychibaeva D.M. Evaluation of the effectiveness of a conservative method of treatment of early srage diabetic retinopathy. - Advanced Opthalmology. - 2023;2(2):35-41. DOI: https://doi.org/10.57231/j.ao.2023.2.2.006
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Туйчибаева Д.М., Янгиева Н.Р

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.