ПРИМЕНЕНИЕ СТРОМАЛЬНЫХ/СТВОЛОВЫХ КЛЕТОК ПРИ ВОЗРАСТНОЙ МАКУЛЯРНОЙ ДЕГЕНЕРАЦИИ (ОБЗОР)

ПРИМЕНЕНИЕ СТРОМАЛЬНЫХ/СТВОЛОВЫХ КЛЕТОК ПРИ ВОЗРАСТНОЙ МАКУЛЯРНОЙ ДЕГЕНЕРАЦИИ (ОБЗОР)

Авторы

  • Хайдаров А.М. Клиническая больница скорой медицинской неотложной помощи
  • Ашуров О.М. Клиническая больница скорой медицинской неотложной помощи
  • Ашуров Я.О. Ташкентская медицинская академия
  • Жангаваров А.Ж. Институт иммунологи и геномики человека

DOI:

https://doi.org/10.57231/j.ao.2024.8.2.023

Ключевые слова:

стромальные/стволовые клетки, ретинальные пигментные эпителии, возрастная макулярная дегенерация, с-реактивный белок

Аннотация

В данном статье были проанализированы более 36 статьей, мы с коллегами дали основные понятие по применению стромальных/ стволовых клеток при возрастной макулярной дегенерации. Возрастная макулярная дегенерация (ВМД) – это дегенеративное заболевание глаз, которое поражает миллионы людей во всем мире, приводя к значительной потере зрения и инвалидности. Современные методы лечения ВМД, такие как терапия противосудорожным фактором роста эндотелия (анти-VEGF), направлены на замедление прогрессирования заболевания, но не способны полностью восстановить зрение. Следовательно, растет интерес к изучению потенциала стволовых клеток для лечения ВМД. Стволовые клетки обладают уникальной способностью дифференцироваться в различные типы клеток, включая клетки сетчатки, что делает их привлекательным кандидатом для регенеративной медицины в области офтальмологии. Были исследованы различные источники стволовых клеток, включая эмбриональные стволовые клетки, индуцированные плюрипотентные стволовые клетки и взрослые стволовые клетки, полученные из различных тканей.

Биографии авторов

Хайдаров А.М., Клиническая больница скорой медицинской неотложной помощи

Доктор медицинских наук, профессор, главный врач

Ашуров О.М., Клиническая больница скорой медицинской неотложной помощи

Врач офтальмохирург высшей категории, заведующий отделением микрохирургии глаза и травм

Ашуров Я.О., Ташкентская медицинская академия

Ассистент врача

Жангаваров А.Ж., Институт иммунологи и геномики человека

Научный сотрудник института иммунологи и геномики человека

Библиографические ссылки

Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health. 2014 Feb;2(2):e106–16.

Owen CG, Jarrar Z, Wormald R, Cook DG, Fletcher AE, Rudnicka AR. The estimated prevalence and incidence of late stage age related macular degeneration in the UK. British Journal of Ophthalmology. 2012 Feb 13;96(5):752–6.

Pezzullo L, Streatfeild J, Simkiss P, Shickle D. The economic impact of sight loss and blindness in the UK adult population. BMC Health Services Research [Internet]. 2018 Jan 30;18(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791217/

Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Progress in Retinal and Eye Research. 2011 Sep;30(5):296–323.

Strauss O. The Retinal Pigment Epithelium in Visual Function. Physiological Reviews. 2005 Jul;85(3):845–81.

Kapil Bharti, Nguyen MTT, Skuntz S, Bertuzzi S, Heinz Arnheiter. The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. The Nature . 2006 Oct 1;19(5):380–94.

Marshall J. The ageing retina: Physiology or pathology. Eye. 2016 Mar;1(2):282–95.

Yangieva N.R., Tuychibaeva S.S., Agzamova S.S. Current state of the issue on the problem of morbidity and disability in ophthalmopathology. Advanced ophthalmology. 2023; 5(5): 77-83. DOI: https://doi.org/10.57231/j.ao.2023.5.5.014

Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K. Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmologica. 2017 Nov 23;90(4):299–309.

Moreira-Neto CA, Moult EM, Fujimoto JG, Waheed NK, Ferrara D. Choriocapillaris Loss in Advanced Age-Related Macular Degeneration. Journal of ophthalmology. 2018 Jan 1;2018(2365-321):1–6.

Sadda SR, Schachat AP, Wilkinson CP, Hinton DR, Wiedemann P, K. Bailey Freund, et al. Ryan’s Retina E-Book. Elsevier Health Sciences; 2022.

Pons M, Cousins SW, Csaky KG, Striker GE, Marin‐Castaño ME. Cigarette Smoke-Related Hydroquinone Induces Filamentous Actin Reorganization and Heat Shock Protein 27 Phosphorylation through p38 and Extracellular Signal-Regulated Kinase 1/2 in Retinal Pigment Epithelium. American Journal of Pathology. 2018 Sep 1;177(3):1198–213.

Chong NV, Keonin J, Luthert P, Frennesson C, Weingeist D, Wolf RC, et al. Decreased Thickness and Integrity of the Macular Elastic Layer of Bruch’s Membrane Correspond to the Distribution of Lesions Associated with Age-Related Macular Degeneration. American Journal of Pathology. 2016 Jan 1;166(1):241–51.

Braunger BM, Bahar Ademoglu, Koschade SE, Fuchshofer R, Gabelt BT, Kiland JA, et al. Identification of Adult Stem Cells in Schwalbe’s Line Region of the Primate Eye. Investigative ophthalmology & visual science. 2017 Nov 21;55(11):7499–9.

Acott TS, Samples JR, Bradley JM, Bacon DR, Bylsma SS, Van Buskirk EM. Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. American Journal of Ophthalmology [Internet]. 2017 Jan 15 [cited 2022 Jan 26];107(1):1–6. Available from: https://pubmed.ncbi.nlm.nih.gov/2912110/

Izzotti A, Longobardi M, Cartiglia C, Rathschuler F, Saccà SC. Trabecular Meshwork Gene Expression after Selective Laser Trabeculoplasty. Schönbach C, editor. PLoS ONE. 2011 Jul 1;6(7):e20110.

Izzotti A, Longobardi M, Cartiglia C, Rathschuler F, Saccà SC. Trabecular Meshwork Gene Expression after Selective Laser Trabeculoplasty. Schönbach C, editor. PLoS ONE. 2016 Jul 1;6(7):e20110.

Tay CY, Padmapriya Sathiyanathan, Chu SWL, Stanton LW, Wong TT. Identification and Characterization of Mesenchymal Stem Cells Derived from the Trabecular Meshwork of the Human Eye. Stem cells and development. 2012 Jun 10;21(9):1381–90.

Du Y, Roh DS, Mann MM, Funderburgh ML, Funderburgh JL, Schuman JS. Multipotent Stem Cells from Trabecular Meshwork Become Phagocytic TM Cells. Investigative Opthalmology & Visual Science. 2016 Mar 21;53(3):1566.

Du Y, Yun H, Yang E, Schuman JS. Stem Cells from Trabecular Meshwork Home to TM Tissue In Vivo. Investigative Opthalmology & Visual Science. 2015 Feb 19;54(2):1450.

Manuguerra-GagnÉ R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of Mesenchymal Stem Cells Promotes Tissue Regeneration in a Glaucoma Model Through Laser-Induced Paracrine Factor Secretion and Progenitor Cell Recruitment. STEM CELLS. 2015 May 22;31(6):1136–48.

Ding Q, Zhu W, Cook AC, Anfinson KR, Tucker BA, Kuehn MH. Induction of Trabecular Meshwork Cells From Induced Pluripotent Stem Cells. Investigative Ophthalmology & Visual Science. 2015 Nov 7;55(11):7065–5.

Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Experimental Neurology. 2013 Mar;198(1):54–64.

Xiao JH, Zhang MN. Neuroprotection of retinal ganglion cells with GDNF-Loaded biodegradable microspheres in experimental glaucoma. PubMed. 2014 Jan 1;24(875-431).

Ma J, Guo C, Guo C, Sun Y, Tiffany Min-Tzu Liao, Beattie U, et al. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival. The Lancent . 2015 Apr 29;10(4):e0125695–5.

Davis D, Dyer MA. Retinal Progenitor Cells, Differentiation, and Barriers to Cell Cycle Reentry. Elsevier eBooks. 2010 Jan 1;3(222-412-33):175–88.

Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and Specification of Retinal Ganglion Cells. Elsevier. 2020 Jan 10;21(2):451–1. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014133/

Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Translational Vision Science & Technology. 2014 May;3(3):7.

Pan CK, Heilweil G, Lanza R, Schwartz SD. Embryonic stem cells as a treatment for macular degeneration. Expert Opinion on Biological Therapy. 2015 May 25;13(8):1125–33.

Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem Cell Treatment of Degenerative Eye Disease. Stem Cell Research. 2015 May;14(3):243–57. Availablefrom: https://www.sciencedirect.com/science/article/pii/S1873506115000306

Blenkinsop TA, Corneo B, Temple S, Stern JH. Ophthalmologic Stem Cell Transplantation Therapies. Regenerative Medicine. 2015 Nov;7(6s):32–9.

Lath YV, Thool AR, Jadhav I. Regeneration of the Retina Using Pluripotent Stem Cells: a Comprehensive Review. Curēus. 2024 Feb 2;3(674-431-23).

Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CFL, et al. The Prevalence of Age-related Maculopathy in the Rotterdam Study. Ophthalmology. 1995 Feb;102(2):205–10.

Klein R, Knudtson MD, Lee KE, Gangnon RE, Klein BEK. Age–Period–Cohort Effect on the Incidence of Age-Related Macular Degeneration. Ophthalmology. 2008 Sep;115(9):1460–7.

Klein R, Klein BEK, Lee KE, Cruickshanks KJ, Gangnon RE. Changes in Visual Acuity in a Population over a 15-year Period: the Beaver Dam Eye Study. American Journal of Ophthalmology. 2014 Oct;142(4):539-549.e2.

Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D’Angelo S, et al. Mechanism of Inflammation in Age-Related Macular Degeneration. 2012 Jan 1;2012(4):1–16.

Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, et al. In Vitro and In Vivo Characterization of Pigment Epithelial Cells Differentiated from Primate Embryonic Stem Cells. Investigative Ophthalmology & Visual Science [Internet]. 2015Mar1;45(3):1020–5. Availablefrom: https://iovs.arvojournals.org/article.aspx?articleid=2182150

Загрузки

Опубликован

2024-06-08
Loading...